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Organic  solar  cells  (OSCs)  have  made  significant  pro-
gress  due  to  the  fast  advances  in  nonfullerene  acceptors
(NFAs)  since  2015[1−7].  The  power  conversion  efficiency  (PCE)
for small-area single-junction OSCs is around 19% with an act-
ive  area  <0.1  cm2[8−11].  Scalability  is  a  key  factor  in  develop-
ing this technology. When scaling lab cells to large-area mod-
ules,  the  device  performance  might  drop.  Brabec et  al.  pro-
posed a stage–gate process for OSCs from R&D effort to com-
mercialization,  which  includes  materials  development,  pro-
cessing,  prototyping,  pilot  process  and  upscaling[12].  Lab-to-
fab transfer involves processing environment (glovebox or am-
bient  air),  coating  technique  (spin  coating  or  scalable  tech-
niques),  device  size  (<1,  1–200,  or  >200  cm2),  device  type
(cells  or  modules),  top  electrode  (evaporated  or  printed)  and
solvent  (halogenated  or  green).  To  visualize  the  upscaling
losses,  representative  high-efficiency  lab  cells  with  small  act-
ive areas and those single cells  and modules with active area
over  1  cm2 reported  from  2018  to  2021  are  summarized  in
Fig. 1(a) and Table 1. In addition, the records in NREL’s Champi-
on  Module  Efficiencies  Chart  are  also  included  for  comparis-
on[13].  The  PCE  usually  declines  with  the  increase  of  the  act-
ive area of the devices.

The representative  high-performance solar  modules  with
active  area  over  1  cm2 are  presented  in Fig.  1.  The  chemical
structures for the photoactive materials are shown in Fig. 1(b).
In  2020,  Huang et  al.  designed  a  nonfullerene  acceptor
named  DTY6,  and  PM6:DTY6  module  (area  18  cm2)  gave  a
PCE  of  14.45%  (certified  13.98%)  (Fig.  1(c))[14].  Very  recently,
Zhou et  al.  found  that  the  long  side  chain  of  BTP-eC9  inhib-
ited  excessive  aggregation  when  processed  with  chloroben-
zene (CB),  and PM6:BTP-eC9 module offered a  PCE of  14.07%
with a wide processing window (area 25 cm2)  (Fig.  1(d))[15].  Li
et  al.  reported  a  Y6  derivative  named  BTO,  and  PM6:Y6:BTO:
PC71BM  module  gave  a  PCE  of  14.26%  (area  36  cm2),  which
was realized without thermal annealing and with non-halogen-
ated  processing  solvent.  It  is  the  record  for  OSC  modules
with an active area exceeding 20 cm2 (Fig. 1(e))[16].

The  efficiency  loss  for  solar  modules  relates  to  the
change  of  processing  method  and  increase  of  area[17].  Spin-
coating is a common method for making lab cells, but not suit-
able for making large-area modules[18]. Slot-die coating is one

of the most practical coating techniques for solar modules. In
2020,  Wei et  al.  used  slot-die  coating  to  make  PTB7-
Th:COi8DFIC:PC71BM  ternary  devices,  achieving  PCEs  of
12.16% and 10.09% for 1 and 25 cm2 flexible devices, respect-
ively  (Fig.  2(a))[19].  Environmental-friendly  manufacturing  re-
quires non-toxic solvents, also leading to PCE loss due to lim-
ited  solubility  of  the  active  materials[20].  Side-chain  engineer-
ing is  an effective approach to optimize active-layer morpho-
logy and attain high-performance organic photovoltaic (OPV)
modules.

The geometrical fill factor (GFF), defined as the ratio of act-
ive area and module area, needs to be considered when evalu-
ating the upscaling loss in PCE. In 2020, Egelhaaf et al. optim-
ized  laser  patterning  parameters  and  the  number  of  cells  in
the  module  for  high  GFF  with  minimum  PCE  loss.  The  certi-
fied PCEs were 12.6% for 26 cm2 module and 11.7% for 204 cm2

module.  The  GFF  was  over  95%  (Fig.  2(b))[21].  Before  this  re-
port,  the  record  efficiency  8.7%  for  OPV  module  (802  cm2)
was demonstrated by Toshiba.

For  large  area  and  low  cost,  all  functional  layers  should
be  processed via solution  coating.  PEDOT:PSS  is  commonly
used  with  metal  grid  as  electrode,  but  its  transmittance  is
weak in the spectral region over 600 nm, which is of great im-
portance  to  the  absorption  of  the  active  layer[22].  Recently,
Zhou et al. made a solution-processed composite electrode Ag-
NWs:PEI-Zn  and  it  presented  low  roughness,  high  transmit-
tance  and  good  thermal  stability.  A  54  cm2 flexible  module
with  a  13.2%  PCE  was  obtained  (Fig.  2(c))[23].  However,  the
top  MoOx/Ag  layer  was  still  thermally  evaporated.  In  2019,
evaporation-free flexible OSC modules offered a PCE of 5.25%
on  an  active  area  of  80  cm2[24].  In  2021,  Egelhaaf et  al.  de-
veloped a printable silver-nanoparticle (AgNP) film as top elec-
trode  and  achieved  a  similar  performance  as  the  evaporated
ones.  The  maximum  PCE  for  4  cm2 modules  with  AgNP  elec-
trode  was  7%[25].  Great  efforts  are  still  needed  to  realize  all-
solution processed efficient OPV modules.

In  short,  large-area  OSCs  have  made  inspiring  advances
with the development of novel materials and processing tech-
niques.  Efforts  are  needed  to  improve  the  scalability  of  OSCs
and  achieve  large-area,  low-cost,  environmental-friendly  and
all-layer-printed modules. 

Acknowledgements

X.  Du  thanks  National  Natural  Science  Foundation  of
China  (52103222),  Natural  Science  Foundation  of  Shandong
Province (ZR2021QA009), Taishan Scholar Foundation of Shan-

  
Correspondence to: J L Wang, jilinwang@glut.edu.cn; L M Ding,

ding@nanoctr.cn; X Y Du, duxy@sdu.edu.cn
Received 5 APRIL 2022.

©2022 Chinese Institute of Electronics

RESEARCH HIGHLIGHTS

Journal of Semiconductors
(2022) 43, 060201

doi: 10.1088/1674-4926/43/6/060201

 

 
 

https://doi.org/10.1088/1674-4926/43/6/060201
https://doi.org/10.1088/1674-4926/43/6/060201
mailto:jilinwang@glut.edu.cn
mailto:ding@nanoctr.cn
mailto:duxy@sdu.edu.cn


 

 

Fig. 1. (Color online) (a) The PCEs for lab cells with small areas and for devices and modules with active area over 1 cm2 (2018–2021); the records
in NREL’s Champion Module Efficiencies Chart are included for comparison. (b) The chemical structures for the active materials. (c) Schematic for
the device structure and J–V curves for 18 cm2 module with a PCE of 14.45% (certified 13.98%). Reproduced with permission[14], Copyright 2020,
Elsevier. (d) 25.21 cm2 module; J–V curve changes with number of subcells. Reproduced with permission[15], Copyright 2021, Wiley. (e) Schemat-
ic for the blade-coating process and J–V curves for modules with different active layers. Reproduced with permission[16], Copyright 2021, Spring-
er Nature.

 

 

Fig. 2. (Color online) (a) Schematic for spin coating and slot-die coating (top) and J–V curves for single cells and modules with different active
area (bottom). Reproduced with permission[19], Copyright 2020, Wiley. (b) Photos and J–V curves for 26 cm2 module (PCE 12.6%) and 204 cm2 mod-
ule (PCE 11.7%) (top) certified by Fraunhofer ISE. Reproduced with permission[12], Copyright 2020, Wiley. PCE changes with active cell width. Repro-
duced with permission [21], Copyright 2020, Wiley. (c) Schematic for the device structure; J–V curves change with the number of subcells (module
area is up to 54 cm2). Reproduced with permission[23], Copyright 2021, Wiley.
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